Подача воздуха в двигатель: устройство и схема работы

Виды систем охлаждения

Всего на двигателях внутреннего сгорания используется два типа охлаждения – воздушное и жидкостное.

Воздушная система охлаждения, ее конструкция, недостатки

Устройство воздушной системы охлаждения двигателя

В силу ряда недостатков на автомобильном транспорте воздушная система широкого распространения не получила, хотя конструктивно она значительно проще, чем жидкостная. Основным ее элементом являются ребра охлаждения на цилиндрах.

Тепло, выделяемое от цилиндров, распространялось на эти ребра, а проходящий через них поток воздуха осуществлял его отвод. Для создания потока дополнительно конструкция системы могла включать турбину – специальную крыльчатку, с приводом от коленчатого вала и рукав, которым создаваемый поток воздуха направлялся на цилиндры. Это вся конструкция воздушной системы.

На автотранспорте воздушная система практически не используется потому, что:

  • невозможна регулировка температурного режима (зимой мотор не выходил на необходимую температуру, а летом – очень быстро перегревался);
  • чтобы обеспечить равномерное распределение потока воздуха, каждый цилиндр стоял отдельно;
  • во время стоянки с заведенным мотором даже при наличии турбины поток воздуха очень слабый, что приводит к быстрому перегреву;
  • невозможно организовать обогрев салона.

Из-за этих недостатков воздушная система на автомобилях не применяется, хотя единичные случаи все же были – ЗАЗ-968 «Запорожец» как раз и имел такую систему охлаждения. Зато она широко используется на мототранспорте и технике, оснащенной 2-тактными моторами (бензопилы, мотокосы, мотоблоки и т. д.).

Особенности эксплуатации дизельных автомобилей

Особенностью эксплуатации автомобилей с дизельными двигателями является тот факт, что такое топливо имеет свойство замерзать при более высоких температурах, в сравнении с бензином. Соответственно, зимой требуется использовать не простую солярку, а специальную зимнюю или арктическую, имеющие различные дополнительные присадки и добавки, предупреждающие их кристаллизацию при температурах в минус 10-20 градусов. Если в вашем регионе температура зимой не опускается ниже -20 градусов, то можно использовать обычную зимнюю солярку. А вот если морозы в -30 и более не редкость, то требуется специальное арктическое топливо.

Эксплуатируя машину на обычной летней солярке, можно полностью вывести из строя двигатель, в бензобаке и подающих патрубках замерзает топливо, которое распирает соединения, и в последующем автовладельца будет ожидать дорогостоящий и сложный ремонт. Именно поэтому экономить и покупать недорогую летнюю солярку в мороз мы бы вам не рекомендовали. То же самое касается тех ситуаций, когда опытные автовладельцы рекомендуют в обычное дизтопливо добавлять небольшое количество бензина. Это лишь приводит к ухудшению эксплуатационных характеристик мотора и, в конечном счете, к его серьезным поломкам.

В особенности аккуратными автовладельцам необходимо быть в переходный период, когда на заправках еще продают летнее топливо, но поздней осенью, ночью и по утрам уже могут отмечаться серьезные заморозки. В итоге, такое простое топливо замерзает при температуре -5 градусов, после чего двигателю и всему автомобилю требуется дорогостоящий и сложный ремонт. При возможности, машину в такое межсезонье следует держать в гараже или теплом боксе, что исключит проблемы с замерзшим дизельным топливом.

Качеству используемого топлива необходимо уделить особое внимание. Если на бензиновой машине однократная заправка некачественным бензином приведет лишь к необходимости прочистки топливного фильтра, то на дизельных силовых агрегатах из строя могут выйти различные дорогостоящие навесные элементы и агрегаты, ремонт которых представляет большую сложность и имеет высокую стоимость

Сегодня не редкость такие ситуации, когда АЗС экономят на качестве топлива, предлагая под видом арктической солярки обычную зимнюю или летнюю разновидность. Поэтому заправляться следует исключительно на проверенных станциях, что позволит избежать ряда сложностей с эксплуатацией автомобилей.

Варианты системы питания

Основными видами горючего для ДВС являются бензин и дизельное топливо («солярка»). Газ (метан) так же относится к видам современного топлива, но, несмотря на широкую применяемость, пока не получил актуальности.
Вид топлива является одним из критериев классификации систем питания ДВС.

В этой связи выделяют силовые агрегаты:

  1. бензиновые;
  2. дизельные;
  3. основанные на газообразном топливе.

Но наиболее признанной среди специалистов является типология систем питания двигателя по способу подачи топлива и приготовления топливно-воздушной смеси. Следуя данному принципу классификации, различаются, во-первых, система питания карбюраторного двигателя, во-вторых, система питания с впрыском топлива (или инжекторного двигателя).

Карбюратор

Карбюраторная система основана на действии технически сложного устройства – карбюратора. Карбюратор – это прибор, осуществляющий приготовление смеси топлива и воздуха в необходимых пропорциях. Несмотря на разнообразие видов, в автомобильной практике наибольшее применение получил поплавковый всасывающий карбюратор, принципиальная схема которого включает:

  • поплавковую камеру и поплавок;
  • распылитель, диффузор и смесительную камеру;
  • воздушную и дроссельную заслонки;
  • топливные и воздушные каналы с соответствующими жиклерами.

Подготовка топливно-воздушной смеси в карбюраторе осуществляется по пассивной схеме. Движение поршня в такте впуска (первом такте) создает в цилиндре разряженное пространство, в которое и устремляется воздух, проходя через воздушный фильтр и сквозь карбюратор. Именно здесь и происходит формирование горючей смеси: в смесительной камере, в диффузоре топливо, вырывающееся из распылителя, дробится воздушным потоком и смешивается с ним. Наконец, через впускной коллектор и впускные клапаны горючая смесь подается в конкретный цилиндр двигателя, где в необходимый момент и воспламеняется искрой от свечи зажигания.

топливно-воздушной смеси

Впрыск топлива

Эпоха карбюратора сменяется эпохой инжекторного двигателя, система питания которого основана на впрыске топлива. Ее основными элементами являются: электрический топливный насос (расположенный, как правило, в топливном баке), форсунки (или форсунка), блок управления ДВС (так называемые «мозги»).

Принцип работы указанной системы питания сводится к распылению топлива через форсунки под давлением, создаваемым топливным насосом. Качество смеси варьируется в зависимости от режима работы двигателя и контролируется блоком управления.
Важным компонентом такой системы является форсунка. Типология инжекторных двигателей основывается именно на количестве используемых форсунок и места их расположения.

  1. с распределенным впрыском;
  2. с центральным впрыском.

Система распределенного впрыска предполагает использование форсунок по количеству цилиндров двигателя, где каждый цилиндр обслуживает собственная форсунка, участвующая в подготовке горючей смеси. Система центрального впрыска располагает только одной форсункой на все цилиндры, расположенной в коллекторе.

Особенности дизельного двигателя

Как бы особняком стоит принцип действия, на котором основывается система питания дизельного двигателя. Здесь топливо впрыскивается непосредственно в цилиндры в распыленном виде, где и происходит процесс смесеобразования (смешивания с воздухом) с последующим воспламенением от сжатия горючей смеси поршнем.
В зависимости от способа впрыска топлива, дизельный силовой агрегат представлен тремя основными вариантами:

  • с непосредственным впрыском;
  • с вихрекамерным впрыском;
  • с предкамерным впрыском.

Вихрекамерный и предкамерный варианты предполагают впрыск топлива в специальную предварительную камеру цилиндра, где оно частично воспламеняется, а затем перемещается в основную камеру или собственно цилиндр. Здесь горючее, смешиваясь с воздухом, окончательно сгорает. Непосредственный же впрыск предполагает доставку топлива сразу же в камеру сгорания с последующим его смешиванием с воздухом и т.д.

Однако холодный двигатель не сможет обеспечить должный уровень температуры, требуемый для воспламенения смеси. И использованием свечей накаливания позволит осуществить необходимый подогрев камер сгорания.

Конструктивные и эксплуатационные отличия четырехтактных двухтактных бензиновых двигателей

Главное отличие четырехтактного двигателя от двухтактного обусловлено разными механизмами газообмена, а именно: удалением отработанных газов и подачей топливно-воздушной смеси в цилиндр.

Процессы заполнения цилиндра и его очистки в четырехтактном двигателе происходят с помощью газораспределительного специального механизма, который в определенное время открывает и закрывает рабочий цикл.

Очистка цилиндра и его заполнение в двухтактном двигателе выполняется в одно время с с расширением и сжатием при нахождении поршня поблизости мертвой нижней точки. В стенках цилиндра для этого имеется два отверстия: продувочное или впускное и выпускное. Через выпускное отверстие поступает топливная смесь, и выходят отработанные газы.

Основные отличия двухтактных и четырехтактных двигателей:

  1. Литровая мощность. В четырехтактном двигателе на два оборота коленчатого вала приходится один рабочий ход. Поэтому теоретически двухтактный двигатель должен иметь литровую мощность вдвое больше, чем четырехтактный. Но на практике превышение составляет около 1,8 раза, благодаря использованию поршня при расширении хода, а также наличия худшего механизма освобождения цилиндра от отработанных газов и больших затрат на продувку части мощности.
  2. Потребление топлива. Двухтактный двигатель превосходит четырехтактный в удельной и литровой мощности, но уступает в экономичности. Отработанные газы вытесняются воздушно — топливной смесью, которая поступает в цилиндр из шатунно-кривошипной камеры. Часть топливной смеси при этом поступает в выхлопные каналы и удаляется с отработанными газами.
  3. У двухтактного и четырехтактного двигателей принцип смазки двигателя существенно отличается. Двухтактные модели характеризуются необходимостью смешивания бензина с моторным маслом в определенных пропорциях. Масляная воздушно-топливная смесь циркулирует в поршневой и кривошипной камерах, смазывая подшипники коленчатого вала и шатуна. Мельчайшие капли масла при возгорании топливной смеси сгорают вместе с бензином. Продукты сгорания уходят вместе с отработанными газами.

Смешивают бензин с маслом двумя способами. Это может быть простое перемешивание, которое проводится перед тем, как залить в бак топливо и раздельная передача. Во втором случае масляно-топливная смесь образуется во впускном патрубке, расположенном между цилиндром и карбюратором.

Двигатель в последнем случае оснащен масляным бачком с трубопроводом, соединенным с плунжерным насосом. Насос подает масло во впускной патрубок в том количестве, которое необходимо. Производительность насоса зависит от того, как расположена ручка подачи «газа». Поступление масла тем больше, чем больше подается топливо. Более совершенной является раздельная система смазки двухтактного двигателя. Отношение бензина к маслу при ней может достигать 200:1. Это приводит к снижению расхода масла и к уменьшению дымности. Такую систему используют, например, на современных скутерах.

В четырехтактных двигателях бензин с маслом не смешивают, а подают отдельно, для чего двигатели имеют классическую систему смазки, которая состоит из фильтра, масляного насоса, трубопроводной магистрали и клапанов. В качестве масляного бачка может выступать картер двигателя (смазка с «мокрым «картером) либо отдельный бачок («сухой» картер).

В первом случае насос всасывает из поддона масло, направляет его во входную полость, а затем по каналам -к деталям шатунно-кривошипной группы, к подшипникам коленвала и газораспределительному механизму.

В случае смазки с «сухим» картером масло заливают в бочок. Оттуда оно при помощи насоса попадает к трущимся поверхностям. Стекающую в картер часть масла откачивают дополнительным насосом и возвращают в бачок.

Для очищения масла от разных продуктов износа двигатель имеет фильтр. Кроме того при необходимости устанавливают охлаждающие фильтра, потому как температура масла в процессе работы может очень сильно подниматься.

Какой движок лучше дизельный или бензиновый?

Теперь, когда полностью разобрались в принципе работе дизельных агрегатов сравним его с бензиновым аналогом.  Разберемся в отличиях, которые присутствуют в этих технологиях и начнем со сравнения работы двух моторов. Оба относятся к двигателям внутреннего сгорания. В бензиновом моторе топливовоздушная смесь образуется за чертой цилиндрического бака. В конце цикла сжатия, пары от бензина и кислорода перемешиваются и равномерно расходятся по периметру бензобака. Результатом сжатия становится высокая температура жижи, но ее все равно мало для возгорания. Поэтому свечи зажигания выполняют роль вспомогательного поджигателя – и воспламенят смесь для образования энергии. У его соперника и главного героя данной статьи воздух сжимается только под давление. После физического воздействия температура цилиндра подскакивает до 900 градусов. Это стимулирует появление гетерогенной смеси, которая самовоспламеняется.

Бензин или дизель? Что лучше?

Коэффициент полезного действия и сила

Хотя у бензинового агрегата выше мощность, но сгорание нефтяного продукта в дизельном моторе происходит гораздо эффективнее. Он выигрывает в показателях КПД и экономичнее расходует топливную смесь.

Звук

Творение Рудольфа Дизеля издает больше шума из-за работы при высоком давлении, но современные автомобильные рынки предлагают качественную шумоизоляцию, что нивелирует этот недостаток.

Выхлопные газы

Безопасное устройство и сажевый фильтр и соответствие экологическим стандартам «Euro-4» делает дизельные агрегаты более современными и менее воздействующими на окружающую среду.

Безопасность использования

Так как «солярка» сгорает гораздо медленнее бензина это снижает риск возгорания и взрыва бака, еще одним преимуществом в безопасности – отсутствие свечи зажигания.

Использование

Если использовать качественное топливо, то представитель дизельного семейства движков победит в этой рубрике за счет прочных блоков цилиндров и других деталей. Бензиновый аналог менее требователен к горючему низкого класса и устойчивее себя ведет, потребляя его. 

Климатические условия

Бензиновые модели лучше себя показывают в холодной климатической зоне в отличие от «солярки». Но это решается покупкой специального зимнего топлива, но все равно даже с покупкой морозоустойчивого горючего движок будет долго прогреваться. Внедорожники работают на дизеле и выполняют свое назначение, так как горючее не портится от влаги.

Обслуживание

Тем, кто ездит на машинах оснащенных дизельным движком придется чаще менять расходные детали. Фильтры, компрессия в цилиндрах. Техническое обслуживание системы питания, то еще приключение, ведь не каждая мастерская справится с поломкой из-за сложной структуры двигателя. Как правило, ремонт обходится дороже, чем бензинового агрегата.

Особенности дизельного топлива

Большинство требований к системе питания дизельного мотора выдвигается с учетом того, что дизельное топливо имеет ряд специфических особенностей. Горючее такого рода представляет собой смесь керосиновых и газойлевых соляровых фракций. Дизельное топливо получают после того, как из нефти реализуется отгон бензина.

Дизельное топливо обладает целым рядом свойств, главным из которых принято считать показатель самовоспламеняемости, который оценивается цетановым числом. Представленные в продаже виды дизельного топлива имеют цетановое число на отметке 45–50. Для современных дизельных агрегатов наилучшим топливом является горючее с большим показателем цетанового числа.

Система питания дизельного ДВС обеспечивает подачу хорошо очищенного дизельного топлива к цилиндрам, ТНВД сжимает горючее до высокого давления, а форсунка подает его в распыленном на мельчайшие частицы виде в камеру сгорания. Распыленное дизельное топливо смешивает с горячим (700–900 °С) воздухом, который нагревается до такой температуры от высокого сжатия в цилиндрах (3–5 МПа) и самовоспламеняется.

Обратите внимание, рабочая смесь в дизельном моторе не поджигается отдельным устройством, а воспламеняется самостоятельно от контакта с разогретым воздухом под давлением. Эта особенность сильно отличает дизельный ДВС от бензиновых аналогов

Дизельное топливо имеет еще и более высокую плотность сравнительно с бензином, а также обладает лучшей смазывающей способностью

Не менее важной характеристикой выступает вязкость, температура застывания и чистота дизельного топлива. Температура застывания позволяет делить топливо на три базовых сорта горючего: летнее дизельное топливо, зимний дизель и арктическое дизельное топливо

Выгодно ли это?

Если бензиновый мотор полностью работает на газу, стоимость затрат на топливо уменьшается ровно в два раза. 

При благоприятных условиях, окупаемость ГБО на дизеле наступит через 70-100 тысяч километров. И только после этого пробега вы начнете экономить. Вот почему газ на дизельный двигатель ставят лишь в редких случаях, да и то – на отечественные грузовики. На легковых автомобилях такая система практически не встречается.

Требования, предъявляемые к газообразным топливам

  • обеспечение хорошего смесеобразования;
  • высокая калорийность горючей смеси;
  • отсутствие коррозии и коррозионных износов;
  • минимальное образование отложений во впускном и выпускном трактах;
  • сохранение качества при хранении и транспортировании;
  • низкая стоимость производства и транспортирования.

Преимущества использования газообразного топлива

Октановое число газового топлива выше, чем бензина (среднее значение октанового числа – 105), поэтому детонационная стойкость сжиженного газа больше, чем бензина даже самого высшего качества.

Это позволяет добиться большей экономичности использования топлива в двигателе с повышенной степенью сжатия. При этом скорость сгорания газа немного меньше, чем у бензина. В результате снижаются нагрузки на стенки цилиндров, поршневую группу и коленчатый вал, что позволяет двигателю работать ровно и тихо.

Газ легко смешивается с воздухом и равномерней наполняет цилиндры однородной смесью, поэтому двигатель работает ровнее и тише.Газовая смесь сгорает полностью, поэтому не образуется нагар на поршнях, клапанах и свечах зажигания.

Газовое топливо не смывает масляную пленку со стенок цилиндров, а также не смешивается с маслом в картере, не ухудшая, таким образом, смазочные свойства масла. В результате цилиндры и поршни изнашиваются меньше, а периодичность замены моторного масла увеличивается.

По сравнению с бензином сжиженный газ имеет следующие преимущества:

  • в полтора-два раза меньше себестоимость;
  • более высокая детонационная стойкость (октановое число 105);
  • двигатель на газе работает мягче, а срок его службы увеличивается примерно в полтора раза;
  • увеличивается периодичность замены моторного масла в полтора-два раза, поскольку уменьшается срок его старения;
  • увеличивается на 40% срок службы свечей зажигания;
  • газ практически не содержит серы, которая вызывает коррозию металлов и их изнашивание;
  • снижается токсичность отработавших газов (СО в два раза, СН на 50…100%, NOx на 20…30 %);
  • в отличие от бензина газовая смесь более однородна по составу;
  • не накапливаются смолистые отложения на деталях и приборах системы питания, так как нефтяной газ растворяет их;
  • значительно уменьшается нагарообразование на деталях двигателя.

Сжатый природный газ по сравнению со сжиженным нефтяным газом имеет следующие преимущества:

  • бόльшая безопасность, так как он легче воздуха и при утечках улетучивается;
  • дешевле;
  • большие природные запасы;
  • отработавшие газы экологически более чистые.

Недостатки:

  • более низкая скорость сгорания по сравнению с бензином, в результате чего мощность двигателя снижается примерно на 7…12% (до 20%);
  • затрудненный пуск двигателя при низких температурах;
  • увеличение металлоемкости автомобиля на 25…30 кг при сжиженном газе и на 700…800 кг при сжатом;
  • применение дополнительного дорогостоящего оборудования приводит к увеличению стоимости автомобиля на 20..27%;
  • повышенный расход газа по сравнению с бензином;
  • необходимость периодического освидетельствования баллонов для хранения газа на испытательных станциях;
  • трудоемкость ТО и ремонта двигателя возрастает на 3…5%, (эти затраты перекрываются экономией от увеличения межремонтного ресурса двигателей);
  • дальность поездки на одной заправке не превышает 200…250 км;
  • повышенные требования техники безопасности при использовании газобаллонных установок.

Сжиженный газ обычно используется в системах питания двигателей легковых автомобилей. Переоборудовать автомобиль для работы на сжиженном газе проще и дешевле, чем для работы на сжатом. Кроме того, сжиженный газ находится в баллоне под относительно небольшим давлением (примерно 1,6 МПа), а высокая степень разреженности сжатого газа требует увеличить этот показатель в 12-15 раз.

Пример активной «приточки»: OXY

Что лучше – монтировать в загородном доме дорогостоящую канальную вентсистему, или установить в каждом помещении бесканальную «приточку», которая монтируется прямо в стену? Этот выбор сделали множество покупателей приточной вентиляции OXY.

Чем выгодно это устройство?

  • полностью решает проблему повышенной влажности во всем доме и исключает появление плесени;
  • позволяет всегда держать окна закрытыми, что решает возможную даже за городом проблему шума (например, лай собак), сквозняков и пыли от дорог и земли, запахов (например, от соседских костров);
  • обеспечивает подачу свежего воздуха без теплопотерь.

Данный прибор отличается:

  • Многофункциональностью. Оснащен электрическим вентилятором, наличием догрева, который можно полностью отключить, и фильтром;
  • Компактным размером. Примерно, как лист А4.
  • Простотой установки. Монтируется за 1 час без риска повреждения покрытий стен и пола, без грязи и пыли;
  • Модульностью. При необходимости модернизация младшей модели на более функциональную;
  • Высокой производительностью. До 150 м³/час (модель OXY2 и OXY3);
  • Удобством управления. Плавно регулируемая скорость подачи и температура нагрева воздуха.

Система подачи воздуха в дизельный двигатель

Как известно, современный дизельный двигатель на разных автомобилях и спецтехнике обычно оснащается турбокомпрессором. Также данное решение активно используется и на турбобензиновых ДВС.

Другими словами, для получения необходимой отдачи от моторов силовую установку дополнительно турбируют. Дизельный агрегат с турбонаддувом получил название турбодизель. Давайте остановимся на схеме подачи воздуха в такие моторы более подробно.

Как и в случае с бензиновыми ДВС, система питания дизельных моторов воздухом предполагает его забор из атмосферы, очистку поступающего воздуха и дальнейшую подачу в цилиндры. При этом воздух дополнительно проходит через турбину, охлаждается и уже затем поддается в камеру сгорания, причем нагнетается под давлением.

На примере турбодизеля стоит выделить следующие элементы системы питания воздухом:

  • воздухозаборник;
  • воздухоочиститель (воздушный фильтр);
  • турбокомпрессор;
  • специальный воздушный радиатор (интеркулер);
  • впускной коллектор;

С функцией воздухозаборника и воздушного фильтра мы уже ознакомились при рассмотрении атмосферного бензинового мотора. Что касается турбодвигателей на спецтехнике, которая работает в условиях сильной запыленности и общего загрязнения воздуха, используется многоступенчатая система очистки (двух или даже трехступенчатые схемы). В конструкцию может быть включен инерционный предварительный очиститель воздуха и другие подобные решения.

Итак, после прохода через фильтры, воздух втягивается в турбокомпрессор. После турбины воздух идет по трубопроводам уже под давлением, проходя через так называемый воздушный радиатор. Дело в том, что после сжатия в турбине воздух нагревается. При этом если его охладить перед подачей в цилиндры, тогда общая масса воздуха увеличивается.

В результате такого снижения температуры в камеру сгорания удается подать больше воздуха, что позволяет более полноценно и эффективно сжечь топливо, добиться прироста мощности, улучшенной экономичности и снизить токсичность выхлопа.

Далее сжатый и охлажденный воздух попадает во впускной коллектор, а затем и в цилиндры дизельного двигателя. Что касается турбокомпрессора, данное устройство использует энергию отработавших газов. Если просто, газы под давлением вращают турбинное колесо, за счет такого вращения начинает крутиться и компрессорное колесо, которое закреплено на одном валу вместе с турбинным колесом. Затем выхлоп после турбины попадает в выпускную систему ТС и выводится в атмосферу.

Отметим, что существует много разновидностей турбин, которые отличаются по размерам, по своей производительности и могут иметь ряд индивидуальных отличий в общей схеме устройства. Еще добавим, что дизельный двигатель долгое время вообще не имел дроссельной заслонки по сравнению с бензиновыми аналогами. В двух словах, мощность в дизельном агрегате регулируется не количеством подаваемого в цилиндры воздуха, а количеством впрыскиваемого горючего.

Кстати, на современных дизельных ДВС дроссельная заслонка все же появилась, но она выполняет другие задачи. Если точнее, снижается токсичность выхлопа в соответствии с жесткими экологическими нормами.

Работает дроссельный узел тогда, когда нагрузки на двигатель минимальны, то есть мотор не нуждается в мощном потоке свежего воздуха. В этот момент заслонка частично перекрывает подачу воздуха, параллельно с этим срабатывает клапан системы рециркуляции отработавших газов EGR.

В результате оставшийся воздух перемешивается с выхлопными газами, после чего такая смесь снова поступает в цилиндры. Подача выхлопа вместе с воздухом снижает температуру в камере сгорания, в результате в отработавших газах отмечается уменьшение окиси азота.

Как работает топливная система дизельного двигателя

Как уже было сказано выше, в дизельном двигателе происходит самовоспламенение рабочей смеси топлива и воздуха. При этом сначала в цилиндр подается только воздух, затем этот воздух сильно сжимается и нагревается от сжатия. Чтобы произошло возгорание, дизтопливо (солярку) нужно подать ближе к концу такта сжатия.

С учетом того, что воздух сильно сжимается, горючее также необходимо впрыснуть под высоким давлением и эффективно распылить. В различных дизельных ДВС давление впрыска может  отличаться, начиная, в среднем, с отметки в 100 атмосфер и заканчивая впечатляющим показателем более 2 тыс. атмосфер.

Для наиболее эффективной подачи топлива и обеспечения оптимальных условий для самовоспламенения заряда с последующим полноценным сгоранием смеси топливный впрыск реализован через дизельную форсунку. Получается, независимо от того, какой тип системы питания используется, в дизельных двигателях всегда присутствуют два основных элемента:

Другими словами, на многих дизелях давление создает ТНВД (топливный насос высокого давления), а подача дизтоплива в цилиндры происходит через  форсунки. Что касается отличий, в разных системах топливоподачи насос может иметь ту или иную конструкцию, также по своему устройству отличаются и сами дизельные форсунки.

Еще системы питания могут отличаться по расположению тех или иных составных элементов, имеют разные схемы управления и т.д. Давайте рассмотрим системы впрыска дизельных двигателей более подробно.

Руководство по установке

При установке, создании проектов системы распределения потоков обязательно нужно принимать во внимание технические характеристики вентилируемой комнаты, влияющие на распределение воздушного потока в ней. К ряду таких особенностей можно отнести:

  • препятствия, мешающие свободному перемещению кислорода.
  • сильные источники теплового действия вблизи от планируемого места установки распределяющего устройства.
  • наличие переменного расходования кислорода или изменение температурного показателя комнатной атмосферы.

Установка насадок, распределяющих кислород, возможна на потолке, стенах, в напольном покрытии, благодаря чему поддерживается влажность и равномерная циркуляция потоков в аудитории. Диффузоры подлежат обязательному применению для проведения мер противопожарной безопасности. Такие распределители создают завихрения воздушных потоков, чем содействуют перемещению кислорода и его циркуляции в комнате.

Конструкция

Принцип работы дизельного двигателя заключается в преобразовании возвратно-поступательных движений кривошипно-шатунного механизма в механическую работу.

Способ приготовления и воспламенения топливной смеси – это то, чем отличается дизельный двигатель от бензинового. В камерах сгорания бензиновых моторов, приготовленная заранее топливно-воздушная смесь воспламеняется с помощью подаваемой свечой зажигания искры.

Особенность дизельного двигателя заключается в том, что смесеобразование происходит непосредственно в камере сгорания. Рабочий такт осуществляется путем впрыскивания под огромным давлением дозированной порции топлива. В конце такта сжатия реакция нагретого воздуха с дизтопливом приводит к воспламенению рабочей смеси.

Двухтактный дизельный двигатель имеет более узкую сферу применения. Использование одноцилиндрового и многоцилиндрового дизелей такого типа имеет ряд конструктивных недостатков:

  • неэффективную продувку цилиндров;
  • повышенный расход масла при активном использовании;
  • залегание поршневых колец в условиях высокотемпературной эксплуатации и прочие.

Двухтактный дизельный двигатель с противоположным размещением поршневой группы имеет высокую первоначальную стоимость и очень сложен в обслуживании. Установка такого агрегата целесообразна лишь на морских судах. В таких условиях, благодаря небольшим габаритам, малой массе и большей мощности при идентичных оборотах и рабочем объеме, двухтактный дизельный двигатель более предпочтителен.

Одноцилиндровый агрегат внутреннего сгорания широко применяется в домашнем хозяйстве в качестве электрогенератора, двигателя для мотоблоков и самоходных шасси.

Такой тип получения энергии налагает определённые условия на устройство дизельного двигателя. Он не нуждается в бензонасосе, свечах, катушке зажигания, высоковольтных проводах и прочих узлах, жизненно необходимых для нормальной работы бензинового ДВС.

В нагнетании и подачи дизтоплива участвуют: топливный насос высокого давления и форсунки. Для облегчения холодного пуска современные моторы используют свечи накала, которые предварительно подогревают воздух в камере сгорания. Во многих автомобилях в баке устанавливается вспомогательный насос. Задача топливного насоса низкого давления в том, чтобы прокачать топливо от бака к топливной аппаратуре.

Дополнительные системы, необходимые для ДВС

Двигатель автомобиля сравнивают с человеческим сердцем. Сердце не может функционировать без взаимодействия с другими органами в организме. Так и двигателю для нормальной работы нужно несколько дополнительных систем.

Конечно же, большинство двигателей не может работать без трансмиссии, потому что эффективен ДВС только в узком диапазоне оборотов. Впрочем, сейчас активно ведутся разработки по созданию гибридных двигателей, которые всегда должны работать в оптимальном режиме.

Двигателю нужны система зажигания, выхлопа и охлаждения. О последней стоит поговорить более подробно.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий