Принцип работы дизельного двигателя – чтобы смог понять каждый!

Интеркуллер

Было замечено, что если при смесеобразовании используется холодный воздух, КПД двигателя увеличивается до 20%. Это открытие привело к появлению интеркуллера – дополнительного элемента турбин, повышающего эффективность работы.

После всасывания воздуха он проходит через радиатор, и в охлажденном состоянии попадает во впускной коллектор. Мы уже публиковали статью, в которой можно подробно ознакомиться со схемой работы интеркуллера.


За турбиной современного автомобиля необходимо должным образом ухаживать. Механизм крайне чувствителен к качеству моторного масла и перегреву. Поэтому смазочный материал рекомендуется менять не реже, чем через 5-7 тысяч километров пробега.

Кроме того, после остановки машины следует оставлять ДВС включенным на 1-2 минуты. Это позволяет турбине остыть (при резком прекращении циркуляции масла она перегревается). К сожалению, даже при грамотной эксплуатации ресурс компрессора редко превышает 150 тысяч километров.

Строение и принцип действия дизельного двигателя делают его незаменимым агрегатом на тяжелом транспорте, которому необходима хорошая тяга «на низах». Современные дизели с равным успехом работают и в легковых автомобилях, главное требование к которым: приемистость и время набора скорости.

Сложный уход за дизелем компенсируется долговечностью, экономичностью и надежностью в любых ситуациях.

Что еще стоит почитать


Система питания дизельного двигателя


Топливно воздушная смесь


Впускной коллектор с изменяемой геометрией


Принцип работы двигателя автомобиля


Принцип работы инжектора

Принципы работы, преимущества и недостатки дизельного двигателя

Дизельный двигатель представляет собой двигатель внутреннего сгорания, работающий на адиабатическом сжатии. Работа дизельного двигателя сильно отличается от работы бензинового двигателя, поэтому их эффективность и производительность различаются. Адиабатическое сжатие было объяснено в моей предыдущей статье. проверить!

Понимание эффективности дизельного двигателя, истории и принципов работы

Сегодня я познакомлю вас с принципами работы дизельного двигателя, его преимуществами и недостатками.

Дизельный двигатель, имеющий некоторые характеристики, которые вы должны знать, включая воспламенение от сжатия, смесеобразование внутри камеры сгорания, регулировку частоты вращения двигателя в зависимости от качества смеси, гетерогенную топливно-воздушную смесь, высокое соотношение воздуха, диффузионное пламя и, наконец, топливо с высокими характеристиками воспламенения. Все это объясняется в принципах работы дизельного двигателя. Так что продолжайте читать!

Принцип работы дизельного двигателя

Дизельные двигатели предназначены для воспламенения топлива без каких-либо запальных устройств, таких как свечи зажигания, которые хорошо известны по бензиновым двигателям. Он использует сильно сжатый горячий воздух для воспламенения топлива, а не свечу зажигания. Смесь воздуха и топлива происходит в камере сгорания, а не во впускном коллекторе. Принципы работы дизеля настолько интересны, что в камеру сгорания изначально подается только воздух. Затем воздух сжимается в соотношении от 15:1 до 23:1 в зависимости от типа дизельного двигателя и области его применения. Высокая степень сжатия вызывает повышение температуры воздуха. В этот момент топливо впрыскивается в горячий воздух, когда такт сжатия почти достигает верхней точки. Все это происходит в камере сгорания над поршнем.

Топливная форсунка помогает впрыскивать топливо в камеру сгорания небольшими каплями и равномерно распределять их. Сжатый воздух создает сильное тепло, заставляющее топливо испаряться с поверхности капель. Затем пар воспламеняется с использованием того же тепла в камере сгорания. Испарение капель продолжалось до их полного сгорания. Сгорание происходит при практически постоянном давлении в течение начальной части рабочего такта. Когда сгорание завершено, газы сгорания расширяются по мере дальнейшего опускания поршня; высокое давление в цилиндре толкает поршень вниз, передавая мощность на коленчатый вал. Регулировка оборотов двигателя сильно зависит от качества смеси. То есть величина создаваемого крутящего момента определяется исключительно массой впрыскиваемого топлива, всегда смешанного с максимально возможным количеством воздуха. Это приводит к разнице в частоте вращения коленчатого вала.

Высокая степень сжатия дизельного двигателя обеспечивает высокую эффективность его работы. Отсутствие дроссельной заслонки позволяет уменьшить потери при обмене заряда, что приводит к низкому расходу топлива. Это делает дизельный двигатель более экономичным.

Посмотрите, как работает дизельный двигатель, в видео ниже.0033

Дизельный двигатель имеет ряд преимуществ перед двигателем с другим принципом работы. Ниже перечислены области применения дизельных двигателей.

1. Он имеет самый высокий эффективный КПД среди всех двигателей внутреннего сгорания.

2. Дизельный двигатель может работать на самых разных видах топлива.

3. Низкие затраты на топливо. То есть экономичный.

4. Обладает высокой плотностью энергии

5. Хорошие смазывающие свойства

6. Низкий риск воспламенения, т. к. не образуются легковоспламеняющиеся пары

7. Впрыск топлива непосредственно в камеру сгорания, не имеет ограничения забора воздуха, кроме воздушных фильтров.

Симптомы и причины неисправностей

  • Плохой запуск дизельного двигателя на холодную, и после длительного простоя – означает плохо работающие свечи накала, воздух в системе, обратный клапан стравливает давление топлива, плохая компрессия, разряженный аккумулятор;
  • повышенная шумность, увеличенный расход и чёрный дым из выхлопной трубы – означает засорение или износ распылителей и форсунок, неправильные углы опережения впрыска, грязный фильтр очистки воздуха;
  • пропала мощность дизельного двигателя – означает отсутствие компрессии, выход из строя турбины, засорение топливного и воздушного фильтров, некорректные углы опережения впрыска, загрязненный клапан ЕГР;
  • серый или белый дым из выхлопной, повышенный расход масла – означает трещину ГБЦ или пробитую прокладку ГБЦ (уходит охлаждающая жидкость, а в масле появляется эмульсия), неисправность турбонагнетателя.

Устройство топливной системы

Работа топливной системы сводится к тому, чтобы в нужное время подать необходимую порцию дизтоплива. При этом давление в форсунке должно в значительной степени превышать показатель компрессии. Степень сжатия у дизеля намного выше, чем у бензинового агрегата.

Красный цвет — контур высокого давления; желтый цвет — контур низкого давления. 1) ТНВД; 2) клапан принудительной вентиляции картера; 3) датчик давления; 4) топливная рампа; 5) форсунки; 6) педаль акселератора; 7) частота вращения распредвала; частота вращения коленвала; 9) другие датчики; 10) другие исполнительные механизмы; 11) фильтр грубой очистки; 12) бак; 13) фильтр тонкой очистки.

Дополнительно предлагаем прочитать о том, что такое степень сжатия и компрессия. Эта система подачи горючего, особенно в современном исполнении, один из самых дорогих элементов в машине, потому что ее детали обеспечивают высокую точность работы агрегата. Ремонт этой системы очень сложный и дорогостоящий.

Вот основные элементы топливной системы.

ТНВД

Любая топливная система должна иметь насос. Этот механизм всасывает солярку из бака и нагнетает ее в топливный контур. Чтобы автомобиль был экономичным относительно расхода топлива, его подача управляется электроникой. Блок управления реагирует на нажатие педали газа и на режим работы мотора.

Когда водитель нажимает на педаль акселератора, модуль управления самостоятельно определяет, в какой степени нужно увеличить объем топлива, изменить время впуска. Для этого на заводе в ЭБУ прошивается большой список алгоритмов, которые в каждом отдельном случае активируют необходимые механизмы.

Топливный насос создает постоянное давление в системе. В основе этого механизма имеется плунжерная пара. Подробно о том, что это такое и как она работает, рассказывается отдельно. В современных топливных системах используется распределительный тип насосов. Они отличаются компактными размерами, а топливо в этом случае будет поступать более равномерно независимо от режима работы агрегата. Дополнительно о работе этого механизма можно прочитать здесь.

Форсунки

Эта деталь обеспечивает распыление горючего непосредственно в цилиндр, когда воздух в нем уже сжат. Хотя эффективность этого процесса напрямую зависит от напора горючего, большое значение имеет конструкция самого распылителя.

Среди всех модификаций форсунок существует два основных типа. Они отличаются типом факела, который образуется во время распыления. Существует шрифтовый или многоточечный распылители.

Эта деталь устанавливается в головке блока цилиндров, а ее распылитель находится внутри камеры, где топливо смешивается с горячим воздухом, и самовоспламеняется. Учитывая высокие термические нагрузки, а также частоту возвратно-поступательных движений иглы, для изготовления распылителя форсунки используется жаростойкий материал.

Топливный фильтр

Так как в конструкции топливного насоса высокого давления и форсунок присутствует много деталей с очень минимальными зазорами, а сами они должны хорошо смазываться, к качеству (ее чистоте) солярки предъявляются высокие требования. По этой причине в системе имеются дорогостоящие фильтры.

Для каждого типа моторов предназначен свой топливный фильтр, так как у всех разновидностей своя пропускная способность и степень фильтрации. Помимо удаления посторонних частиц этот элемент также должен очищать топливо от воды. Это конденсат, образующийся в баке, и смешивающийся с горючим материалом.

Чтобы вода не скапливалась в отстойнике, зачастую в фильтре имеется сливное отверстие. Иногда в топливной магистрали может образовываться воздушная пробка. Для ее удаления на некоторых моделях фильтров имеется небольшой ручной насос.

В некоторых моделях авто устанавливается специальный прибор, который позволяет подогреть солярку. В зимний период часто этот тип топлива кристаллизуется, образуя частицы парафина. От этого будет зависеть, сможет ли фильтр в достаточной степени пропускать топливо к насосу, что обеспечивает облегченный пуск ДВС на морозе.

Четвертый такт — выпуск.

Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в окружающую среду. В конце такта выпуска давление газов равно 0,11 -0,12 МПа, температура 850—1200. После этого рабочий цикл дизеля повторяется.В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы выпуска и впуска совмещены по времени с процессами сжатия и рабочего хода. Рабочий цикл происходит за 360 градусов (один оборот коленчатого вала).

При движении поршня от ВМТ к НМТ одновременно происходят процессы расширения и выпуска с продувкой цилиндра, а при обратном движении от НМТ к ВМ1 впуск и сжатие. Изменения параметров цикла (давление и температура) соответствуют изменениям параметров четырехтактного двигателя.Сравнение рабочих циклов четырех- , двухтактных двигателей показывает, что при одинаковых размерах цилиндра и частоте вращения коленчатого вала мощность двухтактных двигателей выше в 1.5—1,7 раза. Он проще по конструкции и компактнее.К недостаткам двухтактного двигателя следует отнести ограниченное время газообмена, что ухудшает очистку цилиндра от отработавших газов, увеличивает потери части свежею заряда, снижает экономичность.

Устройство топливной системы

Важнейшей системой является система топливоподачи. Ее функция — подача строго определенного количества топлива в заданный момент и с заданным давлением. Высокое давление топлива и требования к точности делают топливную систему сложной и дорогой. Главными элементами являются: топливный насос высокого давления (ТНВД), форсунки и топливный фильтр.

ТНВД

Предназначен для подачи топлива к форсункам по строго определенной программе, в зависимости от режима работы двигателя и действий водителя. По своей сути современный ТНВД совмещает в себе функции сложной системы автоматического управления двигателем и главного исполнительного механизма, отрабатывающего команды шофера. Нажимая педаль газа, водитель не увеличивает непосредственно подачу топлива, а лишь меняет программу работы регуляторов, которые сами изменяют подачу по строго определенным зависимостям от числа оборотов, давления наддува, положения рычага регулятора и т.п.

На современных авто применяются ТНВД распределительного типа. Насосы этого типа получили широкое распространение. Они компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах благодаря быстродействию регуляторов. В то же время они предъявляют высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах малы.

Форсунки

Они вместе с ТНВД обеспечивает подачу строго дозированного количества топлива в камеру сгорания. Регулировка давления открытия форсунки определяет рабочее давление в топливной системе. Тип распылителя определяет форму факела топлива, которая важна для процесса самовоспламенения и сгорания. Применяются обычно форсунки двух типов: со шрифтовым или многодырчатым распределителем. Форсунка на двигателе работает в тяжелых условиях: игла распылителя совершает возвратно-поступательные движения с частотой в половину меньшей, чем обороты двигателя, и при этом распылитель непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из жаропрочных материалов с особой точностью и является прецизионным элементом.

Топливный фильтр

Является важнейшим элементом дизельного мотора. Его параметры, такие как тонкость фильтрации, пропускная способность, должны строго соответствовать определенному типу двигателя. Одной из его функций является отделение и удаление воды, для чего обычно служит нижняя сливная пробка. На верхней части корпуса фильтра часто установлен насос ручной подкачки для удаления воздуха из топливной системы. Иногда устанавливается система электроподогрева топливного фильтра, позволяющая несколько облегчить запуск двигателя, предотвращающая забивание фильтра парафинами, образующимися при кристаллизации дизтоплива в зимних условиях.

Турбояма

В процессе работы турбина может совершать до 200 тысяч оборотов в минуту. Раскрутить ее до необходимой скорости вращения моментально невозможно. Это приводит к появлению т.н. турбоямы, когда с момента нажатия на педаль газа до начала интенсивного разгона проходит некоторое время (1-2 секунды).

Проблема решается доработкой турбинного механизма и установкой нескольких крыльчаток разного размера. При этом маленькие крыльчатки раскручиваются моментально, после чего их догоняют элементы большого размера. Такой подход позволяет практически полностью ликвидировать турбояму.


Также производятся турбины с изменяемой геометрией, VNT (Variable Nozzle Turbine), призванные решать те же проблемы. В настоящий момент существует большое количество модификаций подобного типа турбин. Коррекция геометрии успешно справляется и с обратной ситуацией, когда оборотов и воздуха становится слишком много и необходимо притормозить обороты крыльчатки.

Принцип работы

Машина с ДВС (двигателем) должна ездить, а для этого ей необходимо совершить механическое усилие. Именно его и производит двигатель, который передает вращательную силу на колеса автомобиля. Те вращаются, и транспортное средство начинает движение. Это очень примитивное объяснение, которое позволит лишь отдаленно понять, что это такое – ДВС в машине. Главная цель двигателя – преобразование бензина (или дизельного топлива) в механическое движение. Сегодня самый простой способ заставить автомобиль двигаться – это сжечь топливо внутри мотора. Именно поэтому двигатель внутреннего сгорания получил соответствующее название. Все они работают по одинаковому общему принципу, хотя есть некоторые разновидности: дизельные, с карбюраторными или инжекторными системами питания и так далее.

Итак, принцип мы поняли: топливо сгорает, высвобождает при этом большие объемы энергии, которые толкают механизмы в двигателе, что приводит к вращению коленчатого вала. Усилия затем передаются на колеса, и машина начинает движение.

Принцип работы четырехтактного двигателя

Такты четырехтактного двигателя Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации

Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта). Это впуск, сжатие, сгорание, выпуск

На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации

Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.

  1. На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
  2. Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
  3. Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
  4. И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.

Работа четырехтактного двигателя По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.

При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.

Принцип работы двухтактного двигателя

Такты двухтактного двигателя Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:

  1. В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
  2. Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.

Работа двухтактного двигателя Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.

При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.

Камера сгорания топливной смеси

Разные модели дизельных двигателей отличаются между собой строением. Одной из немаловажных особенностей является конструкция камеры сгорания. Камера сгорания – пространство, где происходит непосредственно сгорание топлива.

Неразделенная камера расположена в самой конструкции поршня или над ним, топливо на такте впуска попадает в нее, где и воспламеняется при контакте с горячим воздухом. Это наиболее простой вариант, который, к тому же, снижает расход топлива, но сам двигатель при этом работает очень громко.

Другой вариант – разделенная камера, то есть камера, которая расположена не в цилиндре, а на входе к нему и связана с ними каналом. Топливо подается в камеру, где перемешивается с вихревым потоком воздуха, что лучше распределяет его капли по объему камеры сгорания и способствует полному его сгоранию. Такой вариант подходит для небольших установок и легковых автомобилей, но он значительно увеличивает расход топлива.

Исходя из конструкции поршня и камеры сгорания, различают разные способы смесеобразования в дизельных ДВС:

— объемное смесеобразование – самый простой вариант. Камера сгорания представляет собой пространство между поршнем, стенками и головкой цилиндров. Топливо впрыскивается под давлением через распылители форсунок

Здесь важно, чтобы капли топлива равномерно распределились по всему объему и тщательно перемешались с горячим воздухом, поэтому в камере сгорания должен быть организован вихреобразный поток топливного заряда, а само топливо должно подаваться под высоким давлением;

— объемно-пленочное смесеобразование используется в высокооборотных двигателях с небольшим диаметром цилиндров. Это как раз тот случай, когда камера сгорания частично размещена в конструкции поршня. В двигателях отечественного производства такие камеры имеют форму усеченного конуса. При впрыскивании заряда топливо попадает на поверхность камеры сгорания, образуя «пленку», после чего практически сразу испаряется. Вихревые потоки, образующиеся под воздействием перемещения поршня, дают возможность равномерно распределить капли топлива по всему объему;

— предкамерное смесеобразование предусматривает наличие предкамеры, расположенной в крышке цилиндров. Она соединяется с основной камерой сгорания небольшими каналами с диаметрами не более 1% от диаметра поршня. Объем предкамеры составляет до 30% общего объема камер. По форме она может быть овальной, цилиндрической или сферической;

— вихрекамерное смесеобразование происходит за счет вихревых потоков воздуха, что дает возможность максимально смешать топливный заряд с воздухом даже при невысоком давлении его подачи в камеру сгорания. Для такого смесеобразования необходима раздельная камера, состоящая из двух частей: вихревой и основной. На такте сжатия воздух из основной камеры вытесняется в вихревую, которая имеет сферическую или цилиндрическую форму. Поток воздуха создает вихревые движения, двигаясь по кругу, а в это время из форсунки под давлением до 12 МПа подается заряд топлива. Поскольку воздушная волна находится в движении, капли равномерно распределяются по всему ее объему.

Правильная эксплуатация

Неправильная эксплуатация может погубить даже самый надежный мотор.

Продлить ресурс дизельного двигателя, и получать удовольствие от владения автомобилем вам поможет выполнение несложных правил:

  • дизельные двигатели с турбонаддувом очень требовательны к качеству масла и топлива. Заливайте только то масло, которое соответствует требованиям, установленным для вашего ДВС. Заправляйтесь только на проверенных АЗС;
  • проводите ТО топливной аппаратуры и системы предпускового подогрева в соответствии с заявленными производителем нормами. В этом случае у вас не возникнет проблем с запуском дизельного двигателя в холодное время года. Эксплуатация агрегата с неправильно работающей форсункой впоследствии может привести к дорогостоящему ремонту ДВС;
  • после активных поездок турбина нуждается в охлаждении. Не глушите мотор сразу же. Дайте ему поработать некоторое время на холостых оборотах;
  • избегайте запуска «с толкача». Такой способ оживления мотора может причинить большой вред кривошипно-шатунному механизму вашего ДВС.

Современные инновационные технологии и прогрессивный маркетинг позволяют людям выбирать из автомобилей, которые они могут себе позволить. Нам всё меньше приходится идти на компромисс и жертвовать отдельными параметрами. Особенно эта тенденция заметна в процессе эволюции дизельных автомобилей.

https://youtube.com/watch?v=iNPYfAR4b7k

Как работает дизельный двигатель?

Этот тип двигателя существенно отличается от бензинового. Конечно, в обоих случаях происходит небольшой взрыв внутри цилиндра, куда подается топливо. Он же толкает поршень вниз. Однако достигается это совершенно различными способами.

В то время как смесь топлива с воздухом в бензиновом двигателе воспламеняется за счет искры от свечи зажигания, дизельное топливо не поджигают вообще. Дизели не оборудованы свечами зажигания, но вместо этого смесь загорается от сильного сжатия. В бензиновом двигателе степень сжатия колеблется от 8:1 до 10:1, т.е. объем топливовоздушной смеси в цилиндре сжимается до одной восьмой или десятой части от своего первоначального объема. В дизельном двигателе степень сжатия увеличивается почти в 2 раза. Смесь дизельного топлива с воздухом сжимается где-то от 14:1 до 22:1.

Принцип работы системы питания дизельного двигателя

Почему момент сжатия так важен? Потому что возгорание топлива происходит из-за избыточного давления на смесь. Дизельное топливо не горит при воздействии на него пламени или искры, но вырабатывает большое количество энергии, когда воспламеняется от сжатия.

За счет постоянных инженерных внедрений и испытаний, современные дизельные двигатели выдают очень хорошие технические характеристики. Качество сгорания отличное за счет использования турбонагнетателя. Качество сгорания, примерно, выше в 2 раза, чем у бензинового двигателя.

В последние годы идет постоянное усовершенствование не только для улучшения эксплуатационных показателей, но и за счет современных требований мировых экологов. Сначала было требование двигатели Евро-2, потом 3, 4, 5.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий